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Samenvatting 

 

 

Economisch inzicht in de determinanten van de optimale regeling van kruispunten. 

 

Kruispunten zijn een veelvoorkomende schakel in het verkeersnetwerk. Een goede 

regeling van het kruispunt is dan ook essentieel voor een efficiënt gebruik van de 

beschikbare capaciteit. De complexiteit van het probleem maakt de optimalisatie van 

kruispunten echter geen gemakkelijke opdracht. Deze paper reikt hiervoor een extra 

hulmiddel aan door, op basis van economische theorie, inzicht te verschaffen in de 

determinanten van een optimale regeling. Teneinde deze determinerende factoren te 

kunnen identificeren, optimaliseren we in deze paper de regeling van een kruispunt van 

twee wegen die eenzelfde herkomst-bestemmingspaar verbinden. Deze wegen kunnen 

zowel congestiegevoelig als relatief congestieongevoelig zijn. We bestuderen enerzijds 

het effect van voorrangsregels en anderzijds het effect van verkeerslichten. Op basis van 

een spel-theoretische analyse bekomen we een optimale oplossing voor dit simpele twee 

wegen-1 kruispunt-probleem. Meer bepaald tonen we aan dat voor een kruispunt waarop 

een voorrangsregeling van toepassing is, het optimale beleid er over het algemeen in 

bestaat om één van de twee wegen af te sluiten. Als het kruispunt geregeld wordt door 

verkeerslichten, kan het enkel optimaal zijn beide wegen te behouden als ze beiden 

congestiegevoelig zijn. De meerwaarde van deze resultaten is drievoudig. Ten eerste 

bevestigt het tegen-intuïtieve karakter van deze resultaten het belang van een goed 

inzicht in de determinanten van een optimale regeling. Ten tweede laat het -uit deze 

resultaten- verworven inzicht toe grotere netwerken op een efficientere en effectievere 

manier op te lossen. Efficienter omdat de oplossingstijd gereduceerd kan worden door 

een beter inzicht in de locatie van de optimale oplossing, effectiever omdat lokale optima 

gemakkelijker gedetecteerd kunnen worden. Ten slotte kunnen de bekomen resultaten 

ook zelf toegepast worden. In deze paper tonen we bijvoorbeeld aan hoe de bekomen 

resultaten de wetenschappelijke onderbouw kunnen bieden voor de keuze voor autoluw 

stadscentrum. We sluiten deze paper af met een uitbreiding van de analyse naar een 

casus met minimale groentijd, meer bepaald het probleem van sluipverkeer.     
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1. Introduction 

 

Despite decades of research on the optimization of intersections, the poor regulation of 

intersections is a matter of huge frustration amongst many drivers today. The complexity 

of the problem makes the optimization of intersections a hard nut to crack. 

Understanding the causal mechanisms that govern optimal regulation of intersections is 

therefore essential in dealing with complex network problems. Not least because 

externalities, resulting from the selfish behavior of drivers, can lead to results that defy 

intuition.    

In this paper, a hierarchical game theoretic framework is developed to model the 

strategic decisions of both the traffic authority and the drivers. In this so-called 

Stackelberg game the leader (traffic authority) moves first and bases their decisions on 

the expected reaction of follower (the drivers). To obtain an optimal and traceable 

solution we use a simple two-road intersection, that can be controlled by either a priority 

rule or traffic lights. This simplified network structure can represent different types of 

routes and different modes of transport that are either congestible or insensitive to 

congestion.  

The remainder of this paper is organized as follows. After a literature review in Section 2, 

the intersection problem at hand and the assumptions are set out in Section 3.  Section 4 

presents the main results and Section 5 illustrates the theory of the previous section by 

means of two applications. Section 6, finally, offers a conclusion. 

        

2. Literature review 

 

The first traffic signal control model study was undertaken by Webster (1958). This 

model assumes traffic flows to be unaffected by the signal settings. This reduces the 

model to an isolated control problem in which signal settings are optimized for given 

flows on the network. The need to take into account the effects of the change in traffic 

light settings on the network flow was emphasized by Allsop (1974). Together with 

Charlesworth, Allsop developed an iterative convergent approach to solve the combined 

assignment and control problem in which the signal settings are optimized taking into 

account the assignment of the traffic flow according to the user equilibrium (Allsop and 

Charlesworth (1977)).  

Fisk (1984) was the first to model the combined assignment and control problem as a 

Stackelberg game. Chen and Ben-Akiva (1998) developed a dynamic model dealing with 

the combined assignment and control problem and formulated it as a Cournot, 

Stackelberg and monopoly game. Overall, there have only been a limited number of 

authors following Fisk's example in modeling the combined assignment and control 

problem as a Stackelberg game. For an overview, see Hollander and Prashker (2006). 

 

3. Problem formulation and methodology 

 

The first subsection introduces the reader to the Stackelberg game and Nash equilibrium. 

The following subsections elaborate the basic assumptions taken in this paper.  

 

3.1 The Stackelberg game 
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The basic Stackelberg game can be described as follows. A leader chooses his strategy 

           
 after which the follower determines his optimal response            . So, 

   is a function of    and this relation is determined by      
          with    the 

objective function of the follower. Before making his decision the leader will take into 

account this behavior of the follower and hence will choose    such as to minimize 

             .  

The behaviour of the drivers can also be represented as a game because the congestion 

on one road is dependent upon how many users choose to use the same road. In this 

paper, we will assume that the followers behave collectively according to the 

noncooperative principle of Nash which means that for each       they will choose a 

joint response vector   
     (   ∏    

 
   ) such that for every follower i=1, …,M and  

                 
  :            

         
     

       
       

             
         

           
       

  .  

In a two-road network, there are three possible user equilibria: users can all elect (or be 

forced) to take one of the two particular routes, or spread themselves between the two 

routes, dependent on the user cost. When both routes are used, the user cost of both 

routes has to be equal in equilibrium (Wardrop, 1952). 

 

3.2  Assumptions underlying the priority-model 

Figure 1 : Schematical outline of an intersection of two routes connecting one OD-pair 

(AB) regulated by a priority rule. 

 

Three assumptions are imposed on the model representing the intersection regulated by 

a priority rule. The first assumption states that demand is inelastic and equals N. The 

second assumption ascertains that the users on route 2 always have to give way to those 

on route 1. And the third assumption postulates that v hours before a car on route 1 

passes C, cars on route 2 already wait until the car on route 1 has passed. The final 

assumption states that all users are identical and aim to minimize their expected travel 

cost. 

 

3.3 Assumptions underlying the traffic lights-model 
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Figure 2 : Schematical outline of an intersection of two routes connecting one OD-pair 

(AB) regulated by traffic lights. 

 

 

The first assumption underlying the traffic lights-model states that demand is fixed. The 

second assumption applies to the cycle time 'c', that is the duration of the sum of green 

time and red time. To simplify matters, the cycle time is held fixed. Hence, it follows that 

including inter-green time in the analysis is not relevant and will thus be ignored. The 

third assumption states that all users are identical and aim to minimize their expected 

travel cost.  

In this paper, the variable 'r' represents the red time on route 2 and will be the main 

control variable. The corresponding green time on route 2 will thus be (c-r) and a reverse 

scenario holds for route 1.  

Traffic conditions are usually under-saturated, whereby vehicle queues are only created 

during red phases, and are dissolved during green phases. Only during peak periods or at 

bottlenecks, users have to wait several cycles. In this paper the arrival rate is assumed 

to be static. This third assumption limits the model to under-saturated traffic conditions1. 

As there will be alternating red times to avoid collisions at the intersection, both routes 

will experience an expected traffic light waiting time cost (               ). It is clear that 

the traffic light waiting cost functions are increasing in the red time and decreasing in the 

green time ( 
         

  
  , 

         

  
  ). Furthermore, whenever the red time approaches the 

cycle time, the waiting time tends to infinity (                                ). In the 

reverse case, when the red time goes towards zero, the waiting time tends toward zero 

(                                ). As we assume undersaturated traffic conditions, the 

expected traffic light waiting functions are discontinuous and jump to infinity when the 

duration of red time equals the total cycle time. 

 

4. Results and discussion 

 

Starting from the assumption that the traffic authority wants to minimize total travel 

cost, in each of the following sections the minimal total cost of the different policy 

decisions needs to be compared in order to determine the optimal policy.  

 

4.1 Right of way 

 

In this section, the intersection is regulated by a priority rule. First, route 1 is considered 

to have unlimited capacity, while route 2 is subject to linear congestion. Later, we 

                                                 
1
 Otherwise the queue would become infinitely long 
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consider the case where both routes have limited capacity. The reader is reminded that 

people using route 2 always have to give way to the users of route 1. Consequently, only 

the users of route 2 will incur a waiting time.  

 

Proposition 1 When the intersection of two routes connecting one OD-pair is regulated 

by a priority rule, the optimal policy is generally to block one of the two routes. The only 

exception is the case where the marginal congestion cost on the minor route is greater 

than half of the square of the marginal waiting cost (   
  

 
). In this scenario, the optimal 

policy is to leave both routes open.  

 

Only one route subject to congestion 

Let a1 represent the sensitivity to congestion on route 1; Xi equal the flow on route i; 

  be the resource cost for a trip from A to C;    stand for the minimal time cost from A to 

C of route i; and 
    

 
  be the expected waiting time cost on route 2 at the intersection.   

When two parallel routes connect one OD-pair, the government can lay down three 

possible policies: to block route 1, to block route 2, or to leave both routes open. The 

users in turn, can react in three different ways to any chosen policy: to only take route 1, 

to only use route 2, or to use both routes. 

If the government decides to block route 1, then all drivers need to take route 2 and the 

total cost will equal (  +   ) N. If, on the other hand, the government blocks route 2, 

then the user equilibrium will be   =N and the total cost will be (a1N+  +  )N.  If, 

however, the government decides to leave both routes open, the equilibrium reaction of 

the drivers will be   =N if a1N+  <  + 
       

 
, and   =N if   >  . If   <  < a1N+  -

       

 
, the drivers will use both routes, and the Wardrop equilibrium implies 

(  +  +
    

 

 
)N as total cost. The user equilibrium in which both routes are used is, 

however, never optimal from the government’s point of view. Therefore, it is always 

optimal to block one of the two routes. 

Which route to block depends on the relative cost of both routes: a rational authority 

minimizing the social cost closes route 1 if a1N+  >  , and route 2 if a1N+  <  . 

It also follows from this that if the interior equilibrium exists, it is always optimal to block 

the route with limited capacity. This result can be explained intuitively. If both routes are 

used, drivers on the minor (uncongested) route incur a waiting cost, whereas if only the 

minor (uncongested) route were to be used, no waiting cost would be incurred and, 

compared to the interior solution, no other additional costs are incurred. 

In the absence of a government intervention blocking one road, the driver will often 

make the sub-optimal choice. Indeed, whenever a1N+  - 
       

 
<   < a1N+  , the user 

equilibrium is   =N, while   =N would be optimal. On the other hand, whenever   <  < 

a1N+  -
       

 
 there will be an equilibrium in which both routes are used, while it would 

be optimal to have all drivers on route 2. Figure 3 illustrates this second situation. The 

Wardrop equilibrium is given by the intersection of the average cost-curves of route 2 

and route 1 (point G)2. It is clear that the total cost for the interior solution equals ABCD, 

while the total costs would only equal ABFE if route 1 had been blocked.    

                                                 
2
 Note that for interior solutions every additional user on route 1 imposes an extra waiting cost for the drivers 

on route 2. This explains the upward sloping AC-curve of route 2 for increasing    
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Figure 3: The solution in which all travellers use route 2 (E) is optimal. However, without 

intervention, the interior solution (G) will be the user equilibrium. 

 

This can be seen as an illustration of the Braess paradox (Braess, 1968). In the Braess 

paradox, adding one additional link increases rather than decreases total travel cost. 

Here, we also add a link and it is the external waiting cost that users on the main road 

impose on the users of the minor road that can increase the total travel cost. 

 

Both routes subject to congestion 

The sub-optimality of an interior solution continues to hold for the case in which both 

routes are subject to congestion and    
  

 
 (with    the sensitivity to congestion of route 

2). However, when    
  

 
, the total costs are lowest when both routes are used in 

equilibrium.  

Figure 4: The total travel costs resulting from a Stackelberg game 
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Figure 4 shows the different options for the government, and the possible reactions of 

the drivers. When the government decides to close route 1, the user equilibrium will be 

  =N and the total cost will be (  N+ +  )N. When only route 1 is accessible,   =N will 

be the only equilibrium and the total cost will amount to (  N+  + )N. When both routes 

are accessible, the user equilibrium that will be in place depends on the relative value of 

the parameters:   =N if   N+  <  ;   =N if   N+  <  + 
       

 
; and 0<  

 <N in all 

other cases. 

Taking into account the reaction of the drivers, the government will block one of the two 

routes if    < 
  

 
 and leave both routes open if     

  

 
. The optimal policy thus depends on 

the ratio of the congestion coefficient (  ) to the reaction time (v). If   <
  

 
, the situation 

is similar to the case where only one route is subject to congestion. If    
  

 
 and the 

government leaves both routes open, it can be shown that in the interior equilibrium the 

lowest cost will be attained.  

In graphical terms,    
  

 
 boils down to an upward sloping (in   ) average cost curve of 

route 2, while    
  

 
 boils down to a downward sloping ACroute2-curve.  

The underlying logic is that if     
  

 
, the extra congestion cost of having all travelers on 

route 2 is more costly than the saving in waiting costs. If, however,   < 
  

 
 the opposite is 

true.  

Figure 5: The interior solution (G) is optimal. No government intervention is needed to reach the 

optimal solution. 

 

4.2 Traffic lights 

 

In this subsection, the two-road intersection is regulated by traffic lights. Following the 

same approach as in the previous section, first only one route is considered to have 

limited capacity, and subsequently both routes are considered to have limited capacity. 

In this subsection, the government decides first on the signal settings and the drivers 

subsequently determine which route to take. The user equilibrium is again assumed to be 

a Nash equilibrium.  

 

Only one route subject to congestion 
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Proposition 2 When the intersection of two routes connecting one OD-pair is regulated 

by traffic lights and only one of the two routes is congested, a signal setting whereby 

drivers choose to use both routes can never be an optimal policy. 

 

Table 1: The total travel cost for every (r,UE)-combination 

Signal setting   =N   =N 0<  <N 

r=c (  N+    )N ∞ ∞ 

r=0 ∞ (  +  ) N ∞ 

0<r<c (  N+             )N (  +          ) N (  +          ) N 

  

Table 1 shows that a rational government will never decide on an alternating signal 

setting when both routes are substitutes. Indeed, let         be the expected waiting time 

cost on route i at the intersection3. As         is positive when 0<r<c, the total travel cost 

for an alternating signal setting will always be higher than for r=c or r=0. Which of the 

two non-alternating signal settings will be optimal is dependent on the values of the 

parameters   , N,    and   . Whenever   N+  <  , r=c is the optimal solution and 

whenever   N+      , r=0 will be implemented.4 

Figure 6: A corner solution constitutes the optimal solution; in this case:      

 

The sub-optimality of an alternating signal (0<r<c) in case the intersection is regulated 

by traffic lights and only one route is subject to congestion, even though counter-

intuitive, can be explained intuitively. When the user equilibrium is   =N or   =N (i.e. 

  +       <   +        or   N+  +       <  +        respectively), drivers have to wait at 

the traffic light, while there is no one crossing the intersection. The intuition behind the 

sub-optimality of an alternating signal setting when the user equilibrium is   
 <N is 

shown in Figure 5. If the duration of red light for route 2 is reduced, then the expected 

                                                 
3 We will assume that the saturation flow rate g is very large compared to the arrival rate   , so that the traffic 

light waiting time due to departure delay in the green time is negligible. 
4 The optimality of only one route (mode) connecting one OD-pair remains valid in the case where both routes 

have unlimited capacity. The total minimal cost then equals (  +  )N with i the route index that procures the 

lowest minimal time cost. 
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average waiting time on route 1 increases, indicated by an upward shift of the ACroute1-

curve in Figure 5. At the same time, the expected average waiting time for route 2 

decreases, corresponding to a downward shift of the ACroute2-curve curve. This forces the 

switching point G to the left, hence less people travel on route 1 with a simultaneous 

decrease in total costs.  

From the graph it is clear that the lowest cost (area ABFE) will be obtained when it is 

always green for drivers on route 2 (grey line). It is noted that the ACroute1-curve would 

lie infinitely high in this situation.   

 

This can be vivified by the following example: consider the situation in which the demand 

from A to B is relatively inelastic. Suppose A and B are connected by a road plagued by 

traffic congestion and a tram5. Users are indifferent between the two modes, only the 

user cost matters. The tram line intersects the road trajectory and this intersection is 

regulated by traffic lights. In this situation, even though counter-intuitive, the optimal 

policy would either be to close the road and only maintain the tram to connect point A 

and point B, or to remove the tram and only keep the road, depending on the relative 

costs of the two scenarios.  

 

Both routes subject to congestion 

Turning to the case in which congestion externalities are present on both routes, the 

analysis shows that in this case the optimal policy can be to leave both routes open. 

Proposition 3 When the intersection of two congested routes connecting one OD-pair is 

regulated by traffic lights, the optimal alternating signal setting is independent of the 

total flow and is given by 
   

     
. 

Figure 7: Total costs when the combined assignment and control problem is modeled as 

a Stackelberg game. 

 

Figure 7 shows all the feasible signal settings and the reaction of the drivers to each of 

these signal settings. The third branch, representing the decision of the government to 

                                                 
5 The tram is assumed to be relatively insensitive to congestion and a substitute for the car 
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implement an alternating signal setting (0<r<c), is a clubbing of all red times between 

zero and c.  

 

It can be shown that if there exists an alternating signal setting for which the total cost is 

lower than for any non-alternating r ( i.e., if    
 
 +       <   N and    

 
 +        <  N), 

then the user equilibrium for this r is the one in which both routes are used. Hence, the 

optimal alternating signal setting is the solution of the following optimization problem: 

    
       

(                 )   (                 )   (1) 

S.t.         (2) 

                                     (3) 

       (4) 

      (5) 

      (6) 

The solution will be determined by: 

          

  
    

         

  
   (7) 

Assuming under-saturated traffic conditions, i.e. queues at the intersection are only 

created during the red phases and dissolved during the green phases, the traffic light 

functions take the following form for 0 < r < c: 

 
        

      

  
 (8) 

 
        

  

  
 (9) 

Inserting these expressions in equation (7), and solving for r, the optimal red time for 

route 2 equals: 

    
   

     

 (10) 

Even though the minimal time costs add to the total costs and we would therefore expect 

them to appear in the formula, they are not part of the optimal signal setting-formula. 

This can be explained by observing that the drivers themselves take the minimal time 

cost into account when choosing a route, while they omit the external congestion cost in 

their decision criterion. This omission is corrected by the optimal signal setting.  

The optimal red time on route 2 increases in 
  

     
. The more congestible is route 2 

compared to route 1, the more users will take route 1 and thus a larger cost reduction is 

expected from an increase in green time on route 1.  

The total costs that the optimal traffic light settings produce are given by the following 

equation: 

  
                                     

        
 +  + )N (11) 

If this cost is lower than (  N+  + )N and (  N+ +  )N,  then the optimal policy is to 

implement   
   

     
. If on the other hand the parameters are such that (  N+  + )N is 

the lowest cost, then the optimal policy would be to only give green to route 1. Finally, if 

(  N+ +  )N is the lowest cost a rational authority would implement r=0.  

 

4.3 The choice between traffic lights and a priority rule 
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Proposition 5 If only one route is subject to congestion, the superiority of a regulation 

by traffic lights over a priority rule becomes more likely the higher the flow on the main 

route6, the lower the response time of the drivers and the higher the cycle time. More 

specifically, for all    √      it is optimal to opt for traffic lights.  

 

If for some reason both routes have to be used and if r can be chosen such that   

√   
       

    
  

 

 and 0<r<c, then traffic lights are the better choice. 

This can be seen as follows: if both routes have to be used when traffic lights are 

present, the total cost amounts to (
  

  
     ) . Comparing this with the total cost in a 

priority rule situation, (
    

 
     ) , it is clear that if 

  

  
 

    

 
 (this comes down to 

  √     ), traffic lights reduce the total cost. The cost savings that accompany the 

transfer to traffic light regulation thus equal: (
    

 
 

  

  
) . If this value exceeds the 

annualized investment cost, traffic lights are optimal.  

A further examination of the condition on r (  √   
       

    
  

 

) shows that the choice for 

traffic lights is favoured by an increase in the usage of route 1 (higher   ), and even 

more so by an increase in prudent driving behaviour (higher v). This is logical; suppose 

the usage of route 1 is very low, and the red time equals e.g. 
 

 
, then cars on route 2 are 

often waiting while no car on route 1 crosses the intersection. Furthermore, if users on 

route 2 react quickly, then more users can pass the intersection, leading to a favourable 

regulation of the intersection by a priority rule. 

 

5. Two applications 

 

In this section, some of the theoretical results obtained in the previous section are 

illustrated with an example.  

The first example is an application of the following combination of results (see section 

4.2): when two intersecting routes of which only one is congestible, connect one OD-pair 

and the interior equilibrium exists, then the optimal policy is to block the congested 

route. The second example extends the results in section 4.2 by including local traffic in 

the problem setting.  

 

5.1 A low-traffic city-center 

                                                 
6 which, on its turn, depends on the parameters   ,   , v and    
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Figure 8: Commuters can take the car or the bicycle. 

 

Imagine a city where the inhabitants live on the edge of the city and work in the city 

center. There is a bike path as well as a congestible road connecting work and home and 

both are currently being used for commuting trips. In the city center, cyclists always 

have to give way to cars. Applying the results of section 4.2 to this situation, we can 

conclude that for this city the optimal policy would be to make the city center a car-free 

zone. This conclusion continues to stand if the crossing of the bicycle lane and the car 

road is regulated by traffic lights.  

A city center in which no motorized traffic at all is allowed, is however unrealistic. After 

all, shops have to be provisioned and emergency vehicles have to be able to enter the 

city center. A simple solution, already adopted in many cities, is to allow only certain 

vehicles to enter the city center. This can be done using, for example, automatic rising 

bollards. 

 

5.2 A bypass and a city road 

 

A well-known situation in which one OD-pair is connected by two parallel roads is 

represented in Figure 9. Here, transit traffic has the choice between route 1 or route 2 to 

reach point C, while local traffic can only take route 2.  

Let route 1 (the bypass) have a large capacity. Furthermore, we will assume that both 

local traffic and cut-through traffic contribute to the city road congestion. Suppose that 

the traffic lights are regulated by a federal authority whose objective it is to minimize the 

total cost of all drivers.     

Figure 9: Transit traffic will either take the city road or the bypass depending on the 

signal settings. 

 

 

Let    be the number of transit drivers taking the bypass per hour;    the number of 

transit drivers taking the city road per hour;    the congestion sensitivity of the city road; 
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   the minimal time to go to point C using the city road;    the minimal time to go to 

point C using the bypass; g the amount of cars that can cross the intersection per hour of 

green time; R the local traffic per hour; N the total transit traffic per hour;         the 

total waiting time at the traffic light on route i; and r the red time for the city road. 

Table 2: Total travel cost for every (r,UE)-combination in a bypass situation. 

Signal setting   =N   =N 0<  <N 

r=c ∞ ∞ ∞ 

r=0 ∞ (  (R+N)+  )(N+R) ∞ 

0<r<c (  R+          )R 

+(          )N 

(  (R+N)+          )(N+R) (          ) (N+R) 

 

In Table 2 the total cost is shown for every combination of policy and user equilibrium. A 

glance at the table shows that a rational authority would never implement r=c. When the 

city road has always green (r=0), the only Nash equilibrium is   =N. The total cost in 

this case amounts to (  +  (R+N))(R+N). Furthermore, it is remarked that the total cost 

for the combination (  =N, 0<r<c) is always larger than the total cost for the 

combination (  =N, r=0). Finally, it can be shown that the FOC of (  +       )(N+R) 

w.r.t. r is always negative7, so the optimal solution entails that only one of the two routes 

is used.  

The share of green time for the bypass is restricted by the fact that the local traffic has 

no choice but to use the city road. This maximal red time is an element of the interval for 

which   =N. Given that for this interval all transit traffic choses to use the bypass, it is 

welfare decreasing to give more than the minimal green time to the city-road. As a 

consequence, the maximal red time is the optimal r in this interval.  

The previous observations narrow down the candidate solutions to either r=0 or r=   

  
 

 
. In order to determine the optimal signal setting, the government has to compare 

the cost of the (  =N)- and the (  =N)-solution. 

It is clear that a local government, preferring a minimum of transit traffic in its city, 

would try to avoid the (  =N)-outcome. The local government can do this by increasing 

   or   
8. Increasing    or    raises the cost of the (  =N, r=0)-combination relatively 

more9, which decreases the likelihood of the federal government implementing r=0. 

Despite the mathematical analysis required to obtain this result, many cities today 

already apply this strategy. Indeed, speed bumps and speed limits are put in place to 

increase    and the capacity of roads is limited to increase    (De Borger and Proost 

(2013)). 

 

 

 

 

                                                 
7 So, the optimal r is the one for which the drivers are indifferent between using both  routes or just the 
bypass. 
8 We only mention the parameters the local government can influence 

9 
      

   
>

   
       

 
 

   
 and 

      

   
>

   
       

 
 

   
 



 

15 

 

6. Concluding remarks 

 

In this paper, we studied the effects of a priority rule and traffic lights on an intersection 

of two routes connecting one OD-pair. We analytically minimized total travel cost, taking 

into account Wardrop's  principles and the delay at the intersection. We have four major 

results: First, if the intersection is regulated by a priority rule, the optimal policy is 

generally to block one of the two routes; Second, if the intersection is regulated by traffic 

lights, and only one route is congestible the optimal policy is again to block one route. 

Third, if the intersection is regulated by traffic lights, the optimal alternating signal 

setting is always independent of the elasticity of demand. And finally, if only one route is 

subject to congestion, the superiority of a regulation by traffic lights over a priority rule 

becomes more likely the higher the flow on the main route, the lower the reaction time of 

the drivers and the higher the cycle time. 

The results in this paper can be applied to solve one particular larger network problem. 

In this network problem the two routes are a chain of individual components similar to 

the one solved in this paper. If for every component it is optimal to use one and the 

same link10, it can be concluded that it is optimal to maintain only one route. As this 

composition technique can only be applied to a certain kind of network problems, one of 

the future research opportunities is to extend the model to larger networks. Other future 

work includes the extension of the model toward saturated traffic conditions and an 

extension towards multiple government levels. 
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