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Samenvatting 

 
Wereldwijd wordt er gestuurd op een toename van duurzame vervoerkeuzes voor een 
betere leefbaarheid en bereikbaarheid. Vooral in de steden waar de samenleving groeit en 
de dichtheden groter worden is een verandering in kijk op de mobiliteit noodzakelijk om 
de burgers tevreden te stellen. De integratie van fiets en openbaar vervoer (OV) kan hier 
aan bijdragen. Wanneer de fiets wordt gebruikt als voortransportmiddel wordt het 
invloedsgebied van het OV vergroot ten opzichte van lopen waarmee het een beter 
alternatief wordt voor niet-duurzame vervoermiddelen.  

Om de combinatie fiets en OV te vergroten zullen effectieve klantgerichte 
maatregelen genomen moeten worden. Hiervoor is meer inzicht nodig is de factoren die 
een rol spelen bij de keuzes voor voortransportmiddel en halte. Hier is tot op heden nog 
weinig over bekend op het stedelijk niveau. Door de keuzes in één onderzoek te 
combineren wordt de afweging duidelijk tussen het voortransportmiddel en de OV-reis, en 
kunnen de effecten op het invloedsgebied van het OV bepaald worden. Dit is gedaan op 
basis van data van HTM-tramreizigers in Den Haag middels een simultaan discreet 
keuzemodel van voortransportmiddel en halte keuze.  

Resultaten geven aan dat reizigers in het algemeen liever lopen dan fietsen naar de 
tramhalte. Daartegenover staat dat de afstand naar de tramhalte lopend 2,1 keer zwaarder 
weegt dan als men fietst. Dat betekent dat bij een langere afstand fietsen aantrekkelijker 
wordt dan wandelen. Frequente fietsers zijn meer geneigd om ook naar de tramhalte te 
fietsen, terwijl frequente tramreizigers juist minder vaak fietsen naar de tram. De 
aanwezigheid van fietsparkeervoorzieningen vergroot het invloedsgebied van een 
tramhalte, maar de grootste impact op het invloedsgebied van fietsers is de OV-reistijd. 
Verbeteringen aan het OV-systeem, zoals minder haltes en/of hogere frequenties kunnen 
dan ook zorgen voor een groter geaccepteerde fietsafstand (fietskeuze) tot de halte.  

Op basis van deze resultaten lijkt het mogelijk de fiets-OV combinatie ook op 
stedelijk niveau te stimuleren. Hierdoor kan duurzame mobiliteit op stedelijk niveau betere 
concurrentie bieden aan de auto, wat lijdt tot een aantrekkelijkere en beter leefbare stad.  
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1. Introduction 

Governments worldwide are aiming for an increase in sustainable mode use, i.e. transit, 
walking, and cycling [1]. When trips with these modes replace car trips, they can reduce 
emissions and congestion and positively impact health. Integration of bicycle and transit 
can increase catchment areas of transit compared to walking [2], [3]. The mass capacity 
of transit can be supplemented by the flexibility and efficient space-use of bicycles. This 
integration could provide better competition to the car and with that increase sustainability, 
livability and accessibility of urban areas. Effective measures, that improve the integration, 
need to be implemented to increase the use of the bicycle-transit combination. Two key 
questions arise when investigating the bicycle-transit combination; (i) which station do 
individuals use for entering the transit system? and (ii) when do they cycle to access the 
station? Understanding which factors influence the station and access mode choice in 
relation to the bicycle-transit combination can serve as valuable input for these measures. 
 Increasingly studies investigate these questions, where several classes of factors 
influencing the access mode and/or station choice are identified [4], [5]. Individual 
variables, such as age, gender, and income have been found to influence the access mode 
choice. Characteristics of the station, such as service quality, parking facilities, and 
geographical location, as well as characteristics of the access journey are found to influence 
both choice dimensions. And finally, characteristics of the transit journey have been found 
to influence station choice.  

Most studies have investigated either access mode [6], [7] or station choice [8], 
[9]. However, studying the combination of these choice dimensions could shed a light on 
important trade-offs that cannot be captured otherwise. Few studies have investigated this 
combination [10]–[15], where a variety of access modes has been investigated, such as 
walking, cycling, transit, and car (driver or passenger). These studies all cover train 
stations, which is a transit mode generally used at the regional/national level. At the urban 
level, the combination has not yet been studied, even though the modal share of the bicycle 
is known to be lower [16], [17]. Furthermore, the access distance of the bicycle to the 
train is found to be significantly higher than urban transit systems [17], [18]. Hence, the 
question rises which factors influence the combined choice at the urban level and how does 
this differ from the national/regional level.   
 The objective of this study is to identify the factors influencing access mode and 
station choice at the urban level. By accommodating both choice dimensions, the trade-
offs between the access and transit journey can be investigated. Travel behavior data is 
collected in the city of The Hague, Netherlands, one of the major cities in the country, 
which is characterized by a fairly dense tram-line network. Using discrete choice models, 
we investigate which factors are relevant for the combined choice of access mode and tram 
station, accounting for socio-economic, station, tram journey, and access journey 
characteristics. In this study the destination is treated as given, to focus on the trade-offs 
between access journey and transit journey. The station choice set, that serves as input 
for the choice model, is defined for each individual, by first identifying all stations within a 
certain radius from their home and then applying elimination-by-aspects to reduce the 
choice set to the consideration choice set. The access mode choice set is limited to the 
most common access modes at the urban level in the Netherlands (i.e. walking and cycling) 
[19]. 

This study contributes to the state-of-the-art by investigating, for the first time, the 
joint access mode-transit station combination at the urban level. We present trade-offs 
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between access journey and transit journey for each access mode and discuss the 
willingness to cycle to a station further away. The results of this research provide insights 
into behavior of transit passengers at the urban level, which may be used to design 
measures aiming to increase the use of bicycle as access mode to stations. Furthermore, 
this research provides input for planning and design of urban transit stops.  

The remainder of the paper is organized as follows. Section 2 details the 
methodology for identifying the choice set and modelling the joint access mode and tram 
station choice. In Section 3, the data collection and preparation is described. The results 
of the choice set generation and discrete choice models are reported and discussed in 
Section 4. Finally, Section 5 concludes the paper. 

2. Methodology  

This section discusses the methodology for modelling the joint access mode and tram 
station choice. First, the set of alternatives considered by individuals needs to be defined. 
Choice set identification is an important step, especially, where the number of feasible 
options is considerably large as is the case with station alternatives in urban transit 
networks. The set of access modes for urban transit is limited (i.e. walking and cycling). 
In the choice set identification phase, the two choice dimensions are treated separately. 
The focus in this section is on identifying the subset of access stations that are in 
individuals’ consideration sets (2.1). Afterwards, the approach towards modelling the joint 
access mode and station choice is discussed (2.2).  

2.1 Identifying the Tram Station Choice Set 

Whenever the number of alternatives is large, it is hypothesized that individuals are likely 
to apply simple heuristic decision rules to first form their consideration set before 
performing a comprehensive evaluation to arrive at their final choice [20]. Such rules are 
typically non-compensatory, wherein constraints are applied on individual attributes of 
alternatives rather than accounting for trade-offs between attributes. Common non-
compensatory decision models include disjunctive/conjunctive, lexicographic, and 
elimination-by-aspects (EBA). EBA models, which are applied in this study, combine parts 
of the former two models and use both attribute-ranking and threshold specification. 
Starting with the most important attribute, all alternatives not satisfying its threshold are 
eliminated and this is repeated until all attributes are exhausted. Although originally 
proposed as a probabilistic model [21], most choice set generation applications apply EBA 
as a deterministic model [20]. This study uses the calibration methodology proposed in 
Shelat et al. [22] (although slightly adjusted), to avoid having to assume behavioral 
parameters, that is, attribute ranking and thresholds, of the EBA model.  

This study applies EBA such that the parameters remain constant over time and 
across different individuals, and the model not require assumptions regarding the choice 
set size. A threshold is estimated that identifies the maximum value of each attribute in 
the final choice set (𝑆"# ) relative to the smallest value of that attribute in the master choice 
set (MS"# , see Figure 1). Note that MS"#  for individuals are not necessarily disjoint, implying 
that individuals can have the same stations in their set. Thus, while the threshold 
parameters are constant, their dependency on MS"#  may result in variation of final threshold 
values across individuals or over time. The behavioral parameters are calibrated by 
comparing all feasible alternatives against observed choices and optimizing the balance 
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between the efficiency with which unobserved alternatives are excluded and the coverage 
of observed choices.  

Thus, to identify 𝑆"#  for each individual, first, MS"#  consisting of all feasible access 
stations is identified by setting a maximum threshold distance 𝑍 from their home locations. 
Next, attributes required for the EBA model are obtained. Finally, the EBA model is 
calibrated and applied to identify all origin stations considered by individuals for their 
respective destination stations, as explained below. 

 

 
Figure 1: Visualization of the different choice sets  

Trip attributes 

Attributes input to the EBA model can be from different parts of the journey, because are 
all likely to be important for station choice. The following attributes are used for choice set 
identification: (i) Euclidian access distance, and (ii) total transit travel time and (iii) number 
of transfers associated with the transit trip. While the above attributes are important for 
consideration set formation, there likely are other attributes that are relevant in the final 
evaluation. Therefore, alternatives dominated for these three attributes are not removed 
to avoid placing extra behavioral restrictions on the choice analysis. 

For the transit trip attributes, the general transit feed specification (GTFS) data 
associated with the network is used to generated different routes between stations using 
the same procedure as in [22]. Individuals are allowed an egress trip of less than 200m 
between the destination station of the main trip and the observed destination station. The 
best routes between each pair of stations are selected as those that perform best on the 
total transit time and number of transfers; the main trip attributes are obtained from these 
best routes. 

EBA calibration 

Combining the MS"#  for all individuals, a super choice set (SCS) of all feasible origin station 
alternatives for all individuals is obtained. Alternatives in the SCS are uniquely identified 
by the individual and the origin station. Application of the EBA model will eliminate certain 
alternatives from the SCS, resulting in the identification of a subset: the identified super 
choice set (SCSi). The choice sets for individuals whose observed choices remain in this 
subset can be used in the subsequent choice modelling step.  

As mentioned before, the EBA calibration involves optimizing the balance between 
two indicators, (i) coverage – the proportion of observed choices in the SCSi, and (ii) 
efficiency – the proportion of unobserved but feasible alternatives excluded from the SCSi. 
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When the SCSi is the same as the SCS, coverage is one while efficiency is zero. Depending 
on the data, the desired balance between these indicators may be different – this is 
controlled by the multiplier variable in the following indicator, which is minimized: 

𝑥 = multiplier × 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (1) 

The calibration uses a straightforward brute force optimization algorithm that tries all 
possible attribute ranking permutations and attribute thresholds from a pre-defined search 
space [22]. For each permutation, the first ranked (i.e., most important) attribute is 
selected, the threshold minimizing 𝑥 for that attribute is obtained, alternatives not 
satisfying the threshold are eliminated, and this is repeated sequentially until all attributes 
are exhausted. At the end of this process, each attribute ranking permutation is associated 
with a set of attribute thresholds and, thus, an SCSi. Amongst, the different SCSi’s 
obtained, the one that has the smallest value for the optimization indicator, 𝑥, over the 
whole set is selected. For each individual 𝑛 the final station choice set 𝑆"#  is defined, which 
is access mode independent. 

2.2 Joint Choice Model Specification 

The joint choice is modelled using discrete choice modeling. An alternative consists of an 
access mode and a station, given destination station 𝑑. The stations (𝑆"# ) are identified 
using the EBA methodology. As mentioned before, two modes (𝑀") are considered 
available, i.e. walk and bicycle, as these are most prevalent at the urban level [17]. The 
total choice set for each individual 𝑛 is defined as follows [23]: 

																								𝐶" = 		 𝑆"# × 𝑀",	where		𝑆"# = E𝑠G, 𝑠H … 𝑠[K]M	and	𝑀" = 	 E𝑚RSTUTVW,𝑚XYVZM								 (2)	

where 𝐶" is the set of simultaneous mode and station alternatives. The total utility of the 
joint choice is composed of a systematic (observed) and random (unobserved) component 
for each individual 𝑛 (which we omit from the formulation in the remainder for reasons of 
clarity). In the joint choice between access mode and tram station choice several 
characteristics are identified that influence only one choice dimension, whereas others 
influence both. Together these characteristics compose the systematic component of the 
utility. We tested two models, MNL and Nested Logit (NL). In the first, the assumption is 
that an unobserved component is present for the joint choice, but this is not the case for 
each individual dimension. In the latter, additionally an unobserved component is present 
that relates to either of the individual choice dimensions. The NL specifications did not 
benefit the explanatory power of the model, suggesting that no unobserved component 
related to individual choice dimensions is present in the dataset. The total utility function 
of the MNL model is defined as: 

𝑈_` =	𝑉_ + 𝑉 + 𝑉_` + 𝜀_`							∀(𝑠, 𝑚) 	∈ 	𝐶"		 (3)	

where 𝑉_" is the systematic utility that is common for station 𝑠 and individual 𝑛, 𝑉 " 
represents the systematic utility for mode 𝑚 and individual 𝑛, and 𝑉_`" represents the joint 
utility for both station 𝑠 and mode 𝑚. The joint probability for choosing an access mode 
and station is defined as: 

𝑃	(𝑠,𝑚) = 	
𝑒hi	j	hk	j	hik

∑ 𝑒him 	j	hkm	j	himkm
(_m,`m)∈no

			 (4)	

which is also called joint logit [23].  
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Each of the systematic utility components consists of observed characteristics 
related to (a combination of) the individual, aspects of the trip, and the tram station. The 
systematic utility function related to the access mode is specified the following way: 

																𝑉q = 	𝛽q +	𝛽_ ∗ socio +	𝛽w ∗ region + 𝛽` ∗ general	mode	use + 𝛽y ∗ trip	purpose			

																𝑉z = 	0	

(5)	

(6)	

where walking is the reference. The choice for access mode is expected to depend on the 
socio-demographics, region, general mode use that is relevant to the choice (in this case 
the tram and bicycle use), and the purpose of the trip. Furthermore, a mode specific 
constant captures the preferences that cannot be captured with the variables mentioned. 
The systematic utility for tram station choice is defined as follows: 

𝑉_~�~#�"i = 	𝛽_ ∗ station_ +	𝛽~ ∗ tram	journey_	 (7)	

where the choice for tram station 𝑠, which is unlabeled, is expected to depend on station 
characteristics and tram journey characteristics. The joint access mode and station utility 
is defined as follows: 

𝑉q	_~�~#�"i = 	𝛽q� ∗ access	journeyq_ +	𝛽qy ∗ bicycle	parkingq_	

																																			𝑉z	_~�~#�"i =	𝛽z� ∗ access	journeyz_	

(8)	

(9)	

where the joint station and access mode utility is expected to be depended on the access 
journey characteristics and in case of the bicycle also bicycle parking options. The model 
is estimated iteratively with the aim of finding the best performing model in terms of final 
log-likelihood, adjusted rho-square, AIC, and BIC. The models are estimated using 
PythonBiogeme [24]. 

3. Data collection and preparation 

The Hague is the third-largest city of The Netherlands. The modal split of trips within the 
municipality of The Hague is as follows: 36% car, 13% transit, 21% bicycle and 30% 
walking [25]. The municipality states that they are committed to a growth in the number 
of bicycle trips by 25% in 2030 and by 50% in 2040 [26]. More space will be accommodated 
for the bicycle and better transfer options with transit are created, including bicycle 
facilities at stops [27]. Furthermore, transit use is expected to increase further in the 
coming years. With the system running almost at its maximum capacity, other options to 
expand are being investigated. Increasing the capacity of transit will come at high costs, 
while better integration with cycling serves as a sustainable and (cost-)efficient alternative.  
In this section, the data collection method and final sample are discussed (3.1). 
Furthermore, the tram station and access mode characteristics identified for the joint 
model are presented (3.2).  

3.1 Data Collection and Sample Characteristics 

Data of the travel behavior of tram users is collected through a revealed preference survey, 
which was executed on-board tram lines in The Hague [2]. Different tram lines were 
targeted to ensure varying spatial and population characteristics. Respondents were asked 
to fill out a questionnaire containing questions about their current journey from origin to 
destination (including first station, last station and transfer points), general use of tram 
and bicycle, and individual characteristics. The questionnaires were distributed in April 
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2018. During the data collection period no extreme weather, tram disruptions or other 
major disturbances were encountered.  

Nowadays, bicycles are available at both the home- and activity-end of a trip, with 
the increasing presence of shared-bicycle systems. However, during the data collection 
period these systems were not yet available in The Hague, therefore we focus on the home-
end of the trip only, where the bicycle is considered available. The majority of the Dutch 
citizens owns one or more bicycles, therefore this seems a valid assumption [28]. A total 
of three filtering criteria were applied to the dataset of Rijsman et al. [2], being (i) the 
respondent has to live in the The Hague region, (ii) the access mode used is walking or 
cycling, and (iii) the information provided at the home-end needs to be reliable. 

A total of 353 usable responses is collected for this research, which is reduced to 
307 respondents by applying the EBA methodology. The characteristics of the final sample 
are shown in Table 1. The distribution of the ages of the respondents is representative for 
tram travelers in The Hague, as is the distribution of trip purposes. Regarding the tram use 
frequency, the individuals that travel 4-7 days/week are overrepresented in the sample 
[19]. The gender distribution is in line with the Dutch population [29]. Finally, the share of 
the population living outside The Hague (i.e. in Delft, Zoetermeer, or Rijswijk) is slightly 
overrepresented due to the tram lines that were targeted [19].  
 
Table 1: Characteristics of the sample, journeys made, access modes used, and tram stations 

Category Description Share   Category Description Mean/ 
Share 

Std. 
Dev. 

Socio- Male 48%  Trip purpose School 25%  
demographics Female 52%   Work 32%  
 <=27 years 47%    Recreational 43%  
 28-40 years 20%      
 41-64 years 24%  Journey  in-vehicle time (min) 18.2 9.99  
 65=< years 9%  characteristics waiting time (min) 5.7 2.0 
 Dutch 62%   transfers 0.06 0.23 
 Non-Dutch 38%      
    Access modes    
Region of Center 25%  Bicycle Time (min) 5.5 3.7 
The Hague South 13%   Distance (km) 0.44 0.3 
 North-East 15%  Walk Time (min) 4.8 2.0 
 West 20%   Distance (km) 1.36 0.64 
 Other 28%      
    Station Bicycle parking 0.5 0.5 
Cycling  4-7 days/week 34%  characteristics Access to train 0.06 0.23 
frequency 1-3 days/week 25%   Access to bus 0.41 0.49 
 less than weekly 41%   Access to metro 0.04 0.2 
Tram use  4-7 days/week 53%   Access to (other) trams 0.54 0.5 
frequency 1-3 days/week 23%      
 less than weekly 24%      

3.2 Description of Explanatory Variables 

The in-vehicle time for the observed trips is on average 18.2 minutes (Table 1), with 5.7 
minutes of waiting time and a very limited number of transfers (maximum one). A total of 
91.2% of the individuals walked to the tram station, the other 8.8% cycled. This means 
that the number of cyclists is in the sample is higher than the 5.8% in general [19]. Using 
the Google Directions API, the travel time and distance from the home location to the 
chosen and alternative tram stations is calculated, which differ per mode. The average 
travel times towards the chosen station are comparable for walking and cycling, the 
average distances are rather different. This confirms that the bicycle has a larger 
catchment area compared to walking [2], [3]. 
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The station characteristics comprise of the presence of bicycle parking and the 
different multimodal hubs (train/metro/bus/tram). Bicycle parking is present at half of the 
254 tram stations. Half of the stations have bicycle parking facilities, usually bicycle hoops. 
Only few stations are multimodal hubs, mostly bus/tram or tram/tram hubs (with other 
tramlines).  

4. Results and discussion 

The results of the choice set generation are described in 4.1. Access mode and station are 
considered separately in the choice set generation. Walking and cycling are considered 
available to each individual, whereas the EBA model is used to generate station choice 
sets. The merged choice sets are used in the model estimation. The results of the estimated 
models are discussed in relation to the literature in 4.2. Finally, in 4.3 willingness to cycle 
to the tram station further away is investigated.  

4.1 Generated Choice Sets 

The threshold distance 𝑍 is set to 3km, thus including all stations within that radius from 
their home location in MS"# . This threshold is chosen as all walking and nearly all cycling 
trips in the original dataset from Rijsman et al. [2] fall under this threshold. The median 
and 90th percentile sizes of MS"#  are 46 and 95, respectively. These high values are expected 
given the relatively compact structure of The Hague and the fairly high density of its tram 
network (Figure 2). 
 

 
Figure 2: Tram network The Hague, home locations of all respondents and their final choice set sizes 

EBA input parameters 

To obtain the final choice sets, the EBA model is calibrated on access distance, total transit 
travel time, and number of transfers in transit. Unlike Shelat et al. [22], the threshold 
parameters indicate the maximum difference, rather than ratio, relative to the smallest 
value in MS"# . This is done because the latter proved to be too aggressive in the elimination 
of alternatives, possibly due to the variation in the smallest access distances and travel 
times across MS"# .  Furthermore, since the number of observations is limited and the EBA 
inevitably loses some observations when balancing coverage against efficiency, the 
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multiplier value in the optimization indicator (Eq. 1) is set to two in order to ensure a higher 
coverage. 

EBA behavioral parameters 

Calibration of the EBA model with the above settings, found that the most important 
attribute in the choice set formation procedure is transit travel time, followed by the 
number of transfers and the access distance. This indicates that travelers, on average, first 
eliminate stations based on transit trip characteristics, before removing those that do not 
match their access distance thresholds. 

The search space for the threshold parameters ranged from zero to the highest 
possible value in the SCS and had an accuracy of one meter, one second, and one transfer 
for each attribute, respectively. On average, individuals accepted about 16 minutes 
additional travel time compared to the lowest travel time among their feasible alternatives. 
Given that the 3km radius used to generate MS"# , which often covers a significant part of 
the city, often the lowest transit travel time amongst feasible alternatives is rather low. 
Thus, a high threshold value is expected. 

Regarding the number of transfers, individuals did not accept one more transfer 
than the minimum required. This strict constraint may have resulted from the fact that a 
large majority of trips in the network do not make a transfer at all. Including alternatives 
with extra transfers would drastically reduce the efficiency because it would introduce too 
many unobserved alternatives for trips with zero observed transfers.  

Individuals consider stations up to 1.565km further than their nearest station. This 
value is greater than any of the observed maximum differences (the highest was 1.3km). 
Thus, it was used by the model to regulate the number of considered, but unobserved, 
alternatives in the choice set for the given multiplier value. For the above behavioral 
parameters, the observed (Figure 3a) median and 90th percentile access distances are 
0.298km and 0.776km, respectively; whereas those for the maximum (Figure 3b) 
considered access distances in the choice set are 1.638km and 1.96km. 
 

 
Figure 3: observed (a) and maximum access distance in the choice set (b) 

Final choice sets 

The final SCSi contains observations of 308 individuals (out of 353 in the SCS) of which 
307 had more than one alternative in their choice set and are therefore eligible for the 
subsequent choice modelling step. The median and 90th percentile sizes of 𝑆"#  are 7 and 14, 
respectively. Figure 2 marks the choice set size on the home locations of the individuals. 
Although it also depends on the individual’s destination, the choice set sizes tend to be 
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smaller in the regions where the tram network density is lower. To obtain the final joint 
choice set for each individual, the tram station 𝑆"#  and access mode 𝑀" sets are multiplied 
according to Eq. 2, resulting with a maximum choice set size 𝐶" of 60 for the joint choice 
model.  

4.2 Joint Tram Station and Access Mode Model 

The joint model is estimated according to the specification in 2.2. The model is optimized 
by removing insignificant parameters up to the 90% confidence interval. Two models are 
presented, distinguishing mode-specific distance and mode-specific access time (Table 2). 
These two variables are highly correlated, consequently they cannot both be included 
simultaneously. Other studies investigating the joint choice e.g. [10], [15] include access 
distance, whereas studies related to time valuation in transit e.g. [30] include access time. 
To enable comparison, both models are presented, with other variables kept identical. The 
remainder of this section discusses the results of the estimated models. 
 
Table 2: Estimation results of the joint tram station and access mode model. 
**= significant on the 5% level, *=significant on the 10% level 
      MNL-time MNL-distance 
Systematic Utility 
Components Parameter Levels coef. t-stat coef. t-stat 

Access mode Const. Bicycle -5.21** -6.14 -5.46** -6.24 
(Walking = ref.) Const. Walk 0 - 0 - 
 Age  =<40 years 0 - 0 - 
   >40 years -1.54* -1.86 -1.65** -2.22 
 Bicycle use 4-7 days/week 1.53** 2.53 1.38** 2.51 
  Less than 4 days/week 0 - 0 - 
 Tram use 4-7 days/week -1.29** -2.12 -1.09** -2.09 
  Less than 4 days/week 0 - 0 - 
       
Station Access to bus Yes 0.35* 1.87 0.37* 1.89 
  No 0 - 0 - 
 In-vehicle time -0.22** -3.67 -0.23** -3.59 
 Waiting time -0.63** -2.67 -0.66** -2.76 
       
Station  Bicycle parking Yes 0.69 1.45 0.87* 1.83 
+ Access mode  No 0 - 0 - 
 Access time Bicycle -0.98** -7.94 - - 
  Walk -0.60** -13.45 - - 
 Access distance Bicycle - - -3.71** -8.56 
    Walk - - -7.86** -13.20 
Initial Log-Likelihood -836.94 -836.94 
Final Log-Likelihood -247.37 -244.63 
Adjusted Rho square (initial model) 0.692 0.696 
AIC 514.75 509.25 
BIC 552.02 546.52 
Number of observations 307 307 
Number of parameters 10 10 

Overall model fit 

Of the two estimated models, MNL-distance has the best model fit based on all optimization 
criteria. Consequently, access distance has a higher explanatory power compared to access 
time. This finding most likely results from the fact that individuals are more willing to travel 
a similar time period for accessing the transit network using both modes compared to 
travelling a similar distance. By bicycle, with higher average speed, one can travel further 
in the same time period. The model fit of both models is very high, with 69%-70% of the 
behavior being explained by the eleven parameters included in the models. Most of the 
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behavior can be explained by four parameters: in-vehicle time, waiting time, bicycle access 
distance or time, and walking access distance or time (55%-59%).  

Access mode  

The individual specific variables are estimated with walking as a reference. Generally, 
walking is preferred over cycling, as shown by the very negative constant for cycling. 
Gender and ethnicity do not have a significant association with access mode, which is in 
line with a study on general mode choice in the Netherlands [28]. Only one study into the 
joint choice has investigated individual characteristics [11]. However, their study 
investigates train stations in North America, where cycling is rare and car use is high. They 
found that males are less likely to use the car compared to females, preferring active 
modes instead. Related to age, the model shows that individuals over the age of 40 are 
less likely to cycle to the tram stop compared to younger individuals. Chakour and Eluru 
[11] also found a relation with age, however they found that individuals younger than 25 
are less likely to use active modes compared to the car.  

The general use of bicycle and tram influences the access mode choice of 
individuals. An individual cycling 4-7 days/week is more likely to also use the bicycle to 
access the transit network. On the other hand, when individuals travel by tram 4-7 
days/week, their utility for cycling decreases. Thus, individuals that are most likely cycling 
to the tram station (looking at general mode use) are those who cycle frequently and use 
transit less than 4 days/week. 

Tram station 

Generic station characteristics and tram journey characteristics are investigated. The first 
are not very important in the choice model. Unlike train stations, tram stations generally 
are more basic and similar to one another. The presence of a train/tram or metro/tram 
hub did not significantly influence the tram station choice. However, a tram/bus hub is 
more attractive to individuals compared to stations that only serve trams.  

The number of transfers is not included in the model estimation, as the EBA method 
used in choice set generation already excluded stations from which the number of transfers 
is higher than the minimum required on an origin-destination pair. This means that 
although the number of transfers may be relevant, the impact on the choice behavior 
cannot be quantified in this choice model. The in-vehicle time and waiting time of the 
transit journey are valued negatively, according to expectations. The value of waiting time 
is about 2.8 times the value of in-vehicle time. Another study on the tram-network of The 
Hague, found a value of 2.5 [30], suggesting that our model is sensible. In joint choice 
studies, these variables are often excluded. Some studies focus purely on the 
characteristics of the station and exclude the transit journey [10], [11]. Others do not 
include waiting time [12], [14] or have merged waiting time and in-vehicle time [15], 
retaining us from making the comparison with similar studies.   

Station + Access mode 

Stations that provide bicycle parking are more attractive for cyclists. Givoni and Rietveld 
[15] and Debrezion et al. [10] investigated the influence of bicycle parking facilities on the 
joint bicycle-train station choice, where they also found a positive relationship. The impact 
found here is stronger compared to Debrezion et al. [10]. Givoni and Rietveld [15] found 
that bicycle parking facilities that are perceived as having a higher quality have stronger 
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impact on station choice. As we do not have information on the quality of the facilities, we 
do not know how it impacts the choice for the tram stations.   
 The access time of the bicycle is valued stronger than walking (1.6 times), which is 
expected because the bicycle can be chosen to optimize on time. This means that the 
trade-off values between access time and in-vehicle time and waiting time differ per access 
mode. For the bicycle, the trade-offs are such that access time is valued at 4.4 times in-
vehicle time and 1.5 times waiting time. Whereas, for walking these trade-offs are 
respectively 2.7 and 0.97 times.  

Regarding access distance, walking is valued 2.1 times as high as cycling, which 
could be due to the extra physical effort and lower speed related to walking. Givoni and 
Rietveld [15] found a value of 1.43 and Debrezion et al. [10] found a value of 2.3, both 
for accessing train stations in the Netherlands. This means that the value for trams in this 
study lies within the same range. On average cycling becomes more attractive than walking 
for distances of 1.31km or more (by including only the constant and distance).  

4.3 Willingness to Cycle Further to the Station 

Based on the model estimation (MNL-Distance), the willingness to cycle further to the 
station can be calculated for different characteristics of the tram station, individual, and 
transit journey (Figure 4). This provides information on their impact on the catchment 
areas of cyclists at the urban level, which extends the research by Rijsman et al. [2] on 
catchment areas. As the model is linear-in-parameters, the willingness to cycle further can 
be summed for different characteristics to find the combined impact on the catchment 
areas of cyclists.  
 

 
Figure 4: Willingness to cycle further to the tram station for different characteristics 

 
A station that provides bicycle parking is more attractive to cyclists compared to stations 
that do not offer this, such that they are on average willing to cycle 234m more. 
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Consequently, catchment areas of a station can be increased when implementing bicycle 
parking. For a bus/tram station, a cyclist is willing to cycle 100m more. Consequently, if a 
bus/tram station would offer bicycle parking, a cyclist is willing to cycle 334m more.   

An individual older than 40 is less willing to cycle compared to younger individuals, 
such that they will cycle 445m less. Consequently, if a neighborhood contains many 
individuals over the age of 40, the catchment areas of the stations in that neighborhood 
are lower compared to stations in other neighborhoods. An individual that cycles 4-7 
days/week is willing to cycle 372m further compared to individuals that cycle less often, 
whereas high tram use has the opposite effect and reduces the cycling distance by 294m. 
An individual that uses both tram and bicycle often is willing to cycle 78m more than 
individuals that do not.  
 The effect of transit journey characteristics can have a large effect on the catchment 
area of cyclists. Per minute that their transit journey is shortened, via in-vehicle time or 
waiting time, an individual is willing to cycle on average, respectively, 62m and 178m 
further. This means that a reduction in transit time, can quickly increase the accepted 
cycling distance. If, for example, improvements are made towards LRT, where station 
density is reduced to increase travel speed and frequency, individuals are willing to cycle 
much longer distances.  

5. Conclusions and recommendations  

This paper presents the findings of a joint access mode and tram station model, applied 
on revealed preference data from The Hague, Netherlands, with the goal of identifying the 
factors relevant for the joint choice. By investigating the joint choice, trade-offs between 
the access journey and transit journey are calculated. Furthermore, the effects of these 
factors on the bicycle catchment area are investigated. Various studies have already 
investigated the joint choice between access mode and train station choice 
(national/regional level transit) [10]–[15], but this has never been investigated for the 
tram (urban level transit).  
 The joint choice is influenced by factors that are related to the access mode, the 
transit journey, and the combination of these. Our findings suggest that that choice for an 
access mode depends on individual characteristics and the general use of bicycle and tram. 
Age has the largest impact, followed by the general bicycle use frequency. Gender and 
ethnicity are not found to have a significant impact. The choice for a tram station depends 
on station and tram journey characteristics, where the latter are most important. The 
choice set generation model finds that individuals do not consider stations that result with 
more transfers than strictly required. The choice model results show that waiting time is 
judged more strictly compared to the in-vehicle time (2.8 times). The factors impacting 
both choice dimensions are the access journey characteristics and bicycle parking facilities. 
We find that walking distance is weighted more negatively than cycling distance (2.1 
times).  
 The bicycle catchment area is influenced by all factors in the joint model. Via trade-
offs the willingness to cycle further is investigated. Bicycle parking facilities increase the 
catchment area by 234m. Individual characteristics, which can be observed on 
neighborhood level largely impact the accepted distance, where older individual (40+) are 
accepting 445m less than younger individuals. The transit journey time (in-vehicle and 
waiting), has the largest impact on the willingness to cycle further. Improvements to the 
system, such as less stops/higher frequency (like LRT) result with a much higher accepted 
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cycling distance. Consequently, catchment areas of tram stations can increase for cyclists 
when improvements are implemented to the station or transit journey. 
 Based on this study several recommendations for future research arise. This study 
was not able to identify the effect of the quality and quantity of bicycle parking facilities at 
urban transit stations on the joint choice. Understanding this effect could provide more 
insights into which facilities to provide at each station. Furthermore, we expect the bicycle-
tram combination to compete with the bicycle on the urban level. It would be interesting 
to investigate what the trade-offs are between cycling for the entire trip and cycling to the 
tram station. Also, increasingly bicycle sharing systems are available, which means that 
an own bicycle is no longer required. This would affect when and where the bicycle can be 
used (both access and egress). These effects on the joint choice are not yet known, but 
would influence the facilities required for each station.  
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