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Samenvatting 

Hoe kun je elektrische auto’s verder laten rijden zonder grotere batterij? ‘Range anxiety’ 

– de angst om met een lege batterij stil te komen staan op de weg – is één van de 

voornaamste reden voor het niet kopen van elektrische auto’s (EVs). Door betere inzichten 

in het energieverbruik van deze voertuigen kunnen we bestuurders beter informeren om 

op korte termijn een versnelling van de adaptatie van EVs te realiseren. Op lange termijn 

kunnen deze inzichten leiden tot nieuwe businessmodellen en duurzaamheidsoplossingen.  

 

Dit onderzoek legt een verband tussen rijstijlen, weersomstandigheden, infrastructurele 

ontwerpelementen en verkeersdruk en het energieverbruik van elektrische voertuigen. 

Het beantwoordt hoe we data kunnen inzetten om deze effecten te kunnen voorspellen, 

om het energieverbruik te kunnen verminderen. Hierbij is gebruik gemaakt van een 

energievoorspellingsmodel en een VISSIM-model van Nieuwegein (Utrecht, Nederland). 

Middels meer dan 1000 simulaties zijn verschillen in rijstijl, weersomstandigheden, 

infrastructuur (wegtypes, bochten, hellingen, drempels, verkeerslichten) en 

verkeersintensiteiten berekend. De experimenten geven inzicht in de invloed van 

verschillende scenario’s op het energieverbruik en de reistijd. Het model is gevalideerd 

met 30 rijtesten en laboratoriumonderzoek (met een BMW i3) en blijkt de realiteit met 

een nauwkeurigheid van 97% te kunnen voorspellen.  

 

In het onderzoek is gezocht naar de invloedsfactoren en omstandigheden die bepalend 

zijn voor de optimale route en rijstijl voor een elektrische auto. Daarbij is gekeken naar 

de invloed op het energieverbruik van persoonlijke voorkeuren in rijstijl en de 

buitentemperatuur. 

 

Het onderzoek heeft geleid tot inzicht in de rol van data in het bepalen van de beste route. 

Vervolgens is de uitdaging om de bestuurder te informeren en om energieverbruik mee te 

nemen in dynamisch verkeersmanagement. Met dit onderzoek wordt de zoektocht 

geopend naar een systeem waarbij data een prominentere rol krijgt in dynamisch 

verkeersmanagement en wordt nagedacht over hoe we met een dergelijk systeem de 

bestuurder kunnen informeren.   
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1. Introduction 

Internal combustion engine (ICE) - vehicles largely influence the quality of life in cities 

due to their production of greenhouse gases (GHG) emissions (44, 45, 3), noise and fine 

particles (4). Electrification of our transport is a necessary step towards cleaner mobility 

and provides many economic opportunities (5). Range anxiety is one of the biggest 

consumer concerns (6) caused by low battery capacities (7, 8, 9), long charging times 

(10) and a lack of charging infrastructure (6, 11). Reducing range anxiety would give a 

boost to the adoption of EVs. Since breakthroughs in battery capacity (12, 13, 14) and 

charging infrastructure (15, 16, 17, 18) are not expected, other ways have to be found.  

By using less energy – the most fundamental Trias Energetica rule – an EV could drive 

further with the same battery capacity. Currently, 46% of all trips could save energy by 

choosing a different route (19). To do so, we need more insights in the energy 

consumption of electric vehicles. 

Researchers have created many models to predict the energy consumption (2). In 

general, these models have three characteristics: 

1. They aggregate vehicles into groups and use macroscopic variables 

2. They use historical vehicle data 

3. They do not take the full influence of the built environment into account 

To reduce range anxiety, models are needed which can predict the energy consumption 

for individual vehicles using real-time data taking the full influence of the built 

environment into account. More recent energy prediction models, such as CMEM, use 

second-to-second data as an input, enabling researchers to evaluate the effect of 

microscopic driving behavior on the energy consumption.  

With the introduction of microscopic traffic simulation, we are able to simulate 

complex individual driving behavior and vehicle characteristics (20, 21, 22). The output 

of these microscopic models, speed profiles of individual vehicles, could be used as the 

second-to-second input for energy prediction models and therefore, microscopic traffic 

simulations could be perfectly used to research the influence of traffic situations on the 

energy consumption. 

Some microscopic influences on the energy consumption have been researched, such 

as rolling resistance (23, 24, 25), hilly driving (26), traffic calming elements (27, 28, 29) 

traffic intensity (30), vehicle automation (31, 32, 33), driving style (19, 34, 35, 36, 37) 

and weather influences (14, 38, 39, 40). However, a complete overview is lacking, and 

therefore a research gap exists in the influence of the built environment on the energy 

consumption of electric vehicles. By knowing these effects, data can be used to better 

predict the energy consumption of EVs. This also leads to a second gap in research, 

namely how to provide this data to the driver, in order to actually increase the range of 

EVs. To create more knowledge and fill these gaps, this research focusses on two 

research questions. Firstly, how could we use data (concerning driving style, weather, 

infrastructure and traffic intensity) to better predict the energy consumption of electric 

vehicles? and secondly, how could we provide this information to the driver in order to 

improve the range of EVs? 

First, the methodology will be discussed in section 2. Section 3 will discuss the results 

of the first research question, after which section 4 will discuss implications on dynamic 

traffic management which answers the second research question. Finally, section 5 

provides the conclusions.  
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2. Methodology 

This research aims to answer two research questions. This section discusses how we 

aimed to answer these questions. First, section 2.1 discusses the energy consumption 

model which has been used to predict the energy consumption of EVs. Secondly, section 

2.2 shows how different individual elements are modeled into VISSIM and how speed 

profiles are being extracted from these VISSIM models. Section 2.3 explains how a case 

study in Nieuwegein has been performed and section 2.4 discusses how different 

implications on dynamic traffic management have been found. 

 

2.1 Energy consumption model for BEVs 

An energy consumption model, used in (14) has been used to predict the energy 

consumption of EVs. The equations of tractive energy used in the wheels reads: 

 

𝐹𝑡𝑟 = 𝑓𝑟𝑚𝑔𝑐𝑜𝑠(𝜃) +
1

2
𝜌𝐴𝐶𝑑(𝑣 − 𝑤)2 + 𝑚𝑔𝑠𝑖𝑛(𝜃) + 1.05 ∗ 𝑚𝑎  (i) 

 

With fr being the rolling resistance coefficient, m [kg] being the mass of the vehicle 

including the driver, g [m/s2] is the gravitational constant, θ [rad] describes the road 

slope, ⍴ [kg/m3] represents the air density and A [m2] is the frontal area of the vehicle. 

The aerodynamic drag coefficient of the car is described with Cd, the driving speed and 

wind are respectively described with v and w [m/s] and the acceleration is mentioned as 

a [m/s2]. Besides tractive energy, vehicles also consume auxiliary energy. These account 

for lights, climate control, wipers, radio, navigation system and other small electrical 

features. The total consumption depends on the use of these systems and on the 

scenario (temperature, day/night) and is described in (2).  

Finally, internal losses have to be covered. Since this research uses a BMW i3, the 

powertrain efficiency has been set to 85% based on calculations by (2): 

 

𝐸𝑇𝑎𝑛𝑘−𝑡𝑜−𝑤ℎ𝑒𝑒𝑙 =
(𝐹𝑡𝑟∗𝑣+ 𝑃𝑎𝑢𝑥)∗𝑡

𝜂𝑝𝑜𝑤𝑒𝑟𝑡𝑟𝑎𝑖𝑛
=

((𝑓𝑟𝑚𝑔𝑐𝑜𝑠(𝜃)+
1

2
𝜌𝐴𝐶𝑑(𝑣−𝑤)2+𝑚𝑔𝑠𝑖𝑛(𝜃)+1,05∗𝑚𝑎)∗𝑣 + 𝑃𝑎𝑢𝑥)∗𝑡

𝜂𝑝𝑜𝑤𝑒𝑟𝑡𝑟𝑎𝑖𝑛
  (ii) 

 

The final equation indicates that the energy consumption is almost fully related to 

the speed profile of the vehicle. EVs use a regenerative braking system in which kinetic 

energy is being regenerated to electrical energy when braking (3, 46). The efficiency of 

this process depends on the driving style and has been set to 15% for aggressive 

drivers, 40% for normal drivers and 90% for eco-drivers by (2). 

 

2.2 Modeling driving style, weather variables, infrastructural elements and intensity 

Different individual influences have been modeled, either in VISSIM or externally (by 

using Excel). The following subsections describe how. 

 

Driving style 

The model compares three driving styles: eco-driving, normal driving and aggressive 

driving. Based on literature research, variables describing these three driving styles have 

been selected and used in VISSIM. Eco-drivers drive with 95% of the speed of normal 

drivers, while aggressive drivers drive 5% faster than normal drivers. Differences are 

also found in acceleration and deceleration (14, 57, 58), lateral acceleration (14, 70) and 

the efficiency of regenerative braking (69, 70), quantitatively described in (2). 
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Weather variables 

Weather variables have been modeled by adapting variables in the energy consumption 

model. Via the ambient temperature, air pressure, relative humidity, air density and 

wind speed the outcome of the tank-to-wheel energy consumption could be altered. 

Different Dutch weather scenarios have been described in (2) and are used in the 

scenarios. In VISSIM, it is also possible to edit the minimal sight distance. The effect of 

this phenomena on the energy consumption has not been researched but could easily be 

done in future research. 

 

Infrastructural elements 

Based on expert judgement and by comparing other research, infrastructural elements 

influencing the energy consumption have been selected. Infrastructural elements either 

influence the energy consumption by changing the speed profile (through acceleration 

and deceleration or by limitations of lateral acceleration) and by the different rolling 

resistances. (1) describes the setup of different infrastructural elements. 

 

2.3 Nieuwegein case study 

After finding individual influences of different variables on the energy consumption, a 

case study has been performed in Nieuwegein (Utrecht, The Netherlands) to test the 

interconnection of these elements. Three routes have been chosen with the same origin-

destination and comparable travel times. These routes have been selected based on their 

rich amount of individual elements and therefore contain different road types, speed 

limits, infrastructural elements such as speed bumps, slopes, (signalized) junctions, bus 

stops and tram crossings. The first route, named as ‘residential route’, is a typical 

residential street with a speed limit of 30 km/h and a number of speed bumps. The 

second route, named as ‘city center route’, is a 50 km/h road with signalized junctions, 

bus and tram crossings and high traffic intensity. The third and last route is the 

‘motorway route’, which is longer in distance but due to the higher speed competitive in 

travel time. These routes have been modeled in VISSIM to test multiple scenarios. First, 

the network has been tested without any traffic. In the second scenario, morning peak 

traffic has been added and in the third, these vehicles are all set to eco-drivers to test 

the influence of a large scale eco-driving strategy. Finally, a winter scenario has been 

tested. 

 

2.4 Implications on dynamic traffic management 

After finding the influence of different variables on the energy consumption of EVs, route 

optimization based on real-time information with respect to these variables comes into 

consideration. The effect of this route optimization has been proven in (2). To provide 

drivers with this information, changes in the structure of dynamic traffic management 

could be made. A review of the current information structure with respect to traffic 

management has been made, after which we apply new insights on a possible future 

structure which includes real time information based on public data. 
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3. Results 

Section 3 will show the results of the first part of the research. The graphs show VISSIM 

outputs which went through the energy consumption model, and therefore represent the 

energy consumption for different trips with different characteristics. First, individual 

phenomena will be discussed, after which the case study performed in Nieuwegein will 

be shortly emphasized.  

 

3.1 Results of the calculations of individual elements 

 

Influence of driving style 

Driving style influences the energy consumption due to the different speed profiles 

related to different driving styles. Various elements of the driving style have been 

researched. First, a difference in energy consumption has been found for different 

driving speeds (figure 1 (1)) with bigger differences between the driving styles at higher 

speeds (17% at 130 km/h). At very low speeds, the energy consumption rises due to the 

longer running time of the climate system of the vehicle. Therefore, the optimal speed 

depends on the use of the climate system, but will be about 30 km/h for average Dutch 

circumstances. The second graph in figure 1 shows the influence of speed oscillations on 

the energy consumption. The difference is significant (53% increase in energy 

consumption for aggressive drivers with large oscillations) and is larger for aggressive 

drivers than for eco-drivers. This result proves the efficiency of cruise control.  

 

 
FIGURE 1. Influence of driving styles on the energy consumption of EVs 

 

Influence of weather variables 

Energy consumption of electric vehicles is also largely influenced by weather factors 

(figure 2, (1)).Especially at low driving speeds, the influence of the weather is extremely 

high due to the use of the climate system. The energy consumption with an ambient 

temperature of 0°C is about twice as high as the energy consumption at 20°C. The 

influence is lower for higher driving speeds. 

Wind also highly influences the energy consumption. Independent of the driving 

speed, the energy consumption could triple at very high headwind speeds (100 km/h) 

compared to windless scenarios.  
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FIGURE 2. Influence of weather variables on the energy consumption 

 

Influence of infrastructural elements 

The energy consumption of EVs is influenced by infrastructural elements due to the 

rolling resistance, gravitational forces and the deceleration and acceleration at typical 

stop-and-go situations. Different infrastructural elements have been researched to 

quantify their influence on the energy consumption in (figure 3, (1)). For rolling 

resistance, an increase of 20% in energy consumption has been found for urban roads 

compared to motorway road surfaces, while a slope of 1° would increase the energy 

consumption with about 30% for faster drivers (130 km/h) and almost double the 

energy consumption when driving 30 km/h. Interesting is the high influence of speed 

bumps due to the deceleration before the speed bump and the acceleration after the 

speed bump. This influences aggressive drivers more than eco-drivers, due to the more 

aggressive acceleration. For the worst speed bumps, this could lead to two times the 

energy consumption for eco-drivers and four times the energy consumption for 

aggressive drivers. This effect is similar at signalized junctions, however, the waiting 

time also influences the energy consumption (due to the climate system which keeps 

running). Therefore, waiting time influences the energy consumption more when driving 

through cold weather. 
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FIGURE 3. Influence of infrastructural elements on the energy consumption 

 

3.2 Results of the Nieuwegein case study 

A VISSIM network has been created, containing the three routes mentioned in section 2. 

By generating 990 individual energy profiles of vehicles during different driving 

circumstances, four scenarios have been designed.  

 

Travel time and energy consumption 

Figure 4 (1) shows the average travel times and energy consumption for different 

scenarios. The first scenario shows runs in the empty network and shows logical results 

in terms of travel time and energy consumption. The second scenario shows a typical 

morning peak scenario. As expected, the travel times rise significantly. However, the 

energy consumption during peak hour traffic did not rise too much, and even reduced for 

some aggressive driving scenarios. This is mainly due to the lower driving speeds during 

the peak hour, reducing the aerodynamic drag forces significantly. Scenario 3 shows the 

influence of a massive all-eco strategy. The results showed that the energy consumption 

of the eco-drivers is lower, however, the travel times increased massively. During the 

end of the morning peak runs, congestions occurred at almost every intersection, due to 

the low acceleration of the eco-drivers. Therefore, the advice is to closely monitor the 

macroscopic effects when applying large scale eco-driving strategies. During winter, the 

energy consumption rose significantly, and had relatively high impact on slower drivers 

and routes with low speed limits. At the residential route, 40% of all energy consumed 

by eco-drivers during winter has been used by the climate system.   
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FIGURE 4. Comparison of energy consumption and travel times for different routes and 

driving styles 

 

Validation 

The results have been validated by performing 30 driving tests in Nieuwegein (figure 5, 

(1)), by using dynamometer data from Argonne National Laboratory (41) and by 

comparing the results to the technological specifications of BMW itself (42). The energy 

consumption model could predict the Argonne National Laboratory results with an 

accuracy of 98,5% (for all temperatures between between 0 and 25 °C). The driving 

tests performed in Nieuwegein showed that the model could predict the energy 

consumption with a Mean Average Prediction Error of 7,8% for short trips (below 5 km) 

and 3,4% for longer trips. This is extremely accurate, compared to other models used in 

different research projects (14). Comparing the results to the BMW specifications shows 

that BMW is very optimistic about the range of the i3. BMW promotes the efficiency of 

the i3 to be 13,1 kWh/100km, while this research found efficiencies between 13,1 and 

28,8 kWh/100km. Since BMW uses a standard calculation method, we as society should 

question whether we should change this system and be more transparent about the 

actual range of EVs. 

 
FIGURE 5. Difference between measured and predicted energy consumption 
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4. Implications on dynamic traffic management 

After proving that using real-time data can provide us with more accurate information 

about the optimal route and driving style in (2), one could think of actually using this 

data to make traffic more efficient by optimizing routes and driving styles. Section 4 

explores how future information system architecture should look like to enable these 

developments.  

 

4.1 Current information structure 

Current and former traffic management systems often make use of (mainly) historical 

data and knowledge, which form the input for the system, together with some 

algorithms (figure 6). These algorithms enable the system to make calculations for many 

applications, such as the green times at signalized intersections, dynamic traffic 

management scenarios and shortest path algorithms in navigation systems (43). 

However, on a system architecture level, many systems lack feedback loops, resulting in 

a one-way information provision. Therefore, many parts of traffic management systems 

cannot – or not fully – adapt their information to the current scenario.  

 

Traffic management system

(Historical) data and 

knowledge
Algorithms

 
FIGURE 6. Current information structure of traffic management systems 

 

4.2 Future information structure 

To enable traffic management systems to become more dynamic, a shift in the 

information architecture should be made. This shift should account for technological, 

mental and infrastructural elements as these all are required as input. Figure 7 shows 

how a feedback loop has been implemented (in purple). It includes real-time data 

measured by sensors (weather stations, infrastructural sensors such as loops and in-car 

sensors) but also provided by predictions made in digital twins, information generated 

from wearables, smartphones and other GPS devices and personal information about the 

drivers’ preferences. This real-time data describes the current state of the traffic, the 

weather and infrastructural elements, but might also include personal preferences and 

the driving style of the driver. The latter two could be used to give a more personalized 

feedback to the driver, similar to other digital services, such as Netflix, Spotify or Google 

Maps. Such a personalized approach would both make the traffic management system 



Donkers, Quee & De Vries 10 CVS Leuven, 2019 

 

more comfortable for the end-user and also makes it easier for this user to adapt to the 

system. The information could be provided to the end-user through multiple channels, 

including smartphones, navigation systems, other in-car systems, signalized 

intersections, smart road signs and could also be used in future V2V (vehicle to vehicle), 

V2I (vehicle to infrastructure) and V2X (vehicle to everything) applications. 

 

Real-time dynamic traffic 

management system

(Historical) data and 

knowledge
Algorithms

Real-time data about:

- Traffic situation

- Infrastructure

- Weather

- Driving style

- Personal preferences

Measured by:

- Sensors in infrastructural 

elements

- In-car sensors

- Digital twins

- Wearables, smartphones, 

GPS devices

Feedback to driver through:

- Navigation system

- Smartphone

- Dynamic signalized junctions

- Smart road signs

- V2V, V2I, V2X applications

 

FIGURE 7. Future information structure of traffic management systems 

 

4.3 Implications 

The systematic change enables many new features in dynamic traffic management 

systems. The following subsections describe a selection of these. 

 

Implications for navigation companies 

By using real-time data, navigation systems could better predict the optimal route. In 

(2), we proved that not only the fastest route, but also the most energy efficient route 

are dependent on many variables. By implementing these real-time data feedback loops 

in the system architecture of traffic management systems, navigation systems could 

provide drivers with more accurate information. 

 

Implications for dynamic road signs and signalized intersections 

Current dynamic road signs, such as the green-wave or alternative route scenarios, 

mainly focus on the traffic throughput. However, in a society which demands more and 

more for sustainable transportation, one could think of dynamic road signs which not 

only focus on travel time, but also on the energy consumption. ‘Simple’ data, such as the 

ambient temperature, could be easily used to calculate the most optimal route and 

driving style (1) and therefore dynamic road signs could be used to inform the driver 

about these. 
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Signalized intersections could also use real-time information to provide better green 

times and reduce the traffic delays. A start has been made with iVRI systems (47), 

which proved to decrease the traffic delays significantly. By adding more data, these 

systems could develop even more in the future. 

 

Implications for in-car communication systems 

Similar to the dynamic road signs, in-car communication systems could be used to 

inform the driver. A nice addition to the in-car communication systems is that they can 

be used personally, with a decentral information supply. Therefore, they could adapt 

their information based on the personal preferences of a driver. A typical eco-driver 

would be informed about the CO2 reduction of a certain driving style, while a driver 

which highly valuates travel costs would see the reduction of these due to a lower 

energy consumption on a certain route.  

 

(Future) implications for the driver 

The driver itself remains a huge research gap: how is he/she going to adapt his/her 

driving style based on the current information? Could we reduce human errors and 

create a more rational driving style and route choice? And what if a driver simply does 

not want to adapt? More research is necessary to find the most efficient nudging 

techniques. Simultaneously, the interesting development of autonomous vehicles 

enables car manufacturers to impose optimal route choice and driving style to the driver, 

simply because the vehicle itself decides ‘how to drive’. It is good to know that the use 

of real-time data makes it easier to launch the autonomous vehicles on our road 

networks, but it is also good to keep actively discussing the more ethical questions 

related to autonomous driving. How much freedom do we want the driver to have? And 

what do we as a society find more valuable: sustainability, safety, travel time or money? 

 

Who owns the data? 

The last ethical question we would like to raise, is about the data generated within the 

city. Not only should we stick to legal regulations, traffic engineers could (and should) 

also think of the possession of this real-time data. A perfect system would only exist in a 

world of open data, but businesses struggle with sharing a lot of data due to commercial 

reasons. Could we find business models where sharing data could actually be valuable to 

both the owner of the data, and to society? 
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5. Conclusion 

To conclude, this research focused on two research questions. Firstly, how could we use 

data (concerning driving style, weather, infrastructure and traffic intensity) to better 

predict the energy consumption of electric vehicles? We found that many variables 

influence the energy consumption of (electric) vehicles and that we can use real-time 

data to make very accurate predictions of the energy consumption. We also found that 

different optimal routes exist for different scenarios and for different personal 

preferences/driving styles. Therefore, the second research question aimed to find a 

systematic way of providing information, extracted from real-time data, to the driver, in 

order to improve the range of their EVs. A new approach in the information structure of 

dynamic traffic management systems has been provided which uses a feedback loop to 

create a circular information stream which continuously adapts itself to the current 

situation. This approach could be used in many cases, of which some have been 

provided in this research.  

 

This research should be seen as an exploring study towards the possibilities of using 

real-time data in dynamic traffic management systems. Many questions still exist, and 

additional research should be done before we can make the step towards valuable 

business models. 
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